Nvidia jetson nano | Tensorflow-gpu | TensorFlow object detection API | mobilnet-ssd | 训练 自己的数据集_n.n.imoom,tf-程序员宅基地

技术标签: tensorflow  nano  object-detection-api  mobilnet-ssd  训练自己的数据  jetson  

参考自:

      https://www.cnblogs.com/leviatan/p/10740105.html

      https://www.cnblogs.com/gezhuangzhuang/p/10613468.html

关于如何安装tensorflow-gpu参考我这篇博客

      https://blog.csdn.net/ourkix/article/details/103577082

 

目录

下载文件

依赖安装 如按之前博客来的话 应该已经安装好了

安装 object_detection 库

设置 PYTHONPATH

测试 object_detection 库是否安装成功

训练自己的数据集

1. 在自己的voc数据格式文件夹内,新建 train_test_split.py 把xml文件数据集分为了train、test、validation三部分,并存储在Annotations文件夹中,训练验证集占80%,测试集占20%。训练集占训练验证集的80%。代码如下:

2. 把xml转换成csv文件,xml_to_csv.py 将生成的csv文件放在 object_detection/data/

3. 生成tfrecord文件,在research目录下建立generate_tfrecord.py

 

训练

1. 在object_detection/data文件夹下创建标签分类的配置文件(labelmap.pbtxt),需要检测几种目标,将创建几个id,代码如下:

2. 配置管道配置文件,找到object_detection/samples/config/ssd_mobilenet_v1_coco.config,复制到data文件夹下。修改后的代码如下:

3.下载预训练模型(用我上传的文件的话,已经在object_detection/ssd_model/ssd_mobilenet目录下了)

4. 开始训练(这个train.py 文件可能就在object_detection目录下 也可能在object_detection/legacy下)

5.训练完成后,运行 export_inference_graph.py 脚本将训练出的模型固化成 TensorFlow 的 .pb 模型,其中 trained_checkpoint_prefix 要设置成 model.ckpt-[step],其中 step 要与训练迭代次数相同

6.测试模型(在object_detection目录下创建文件seahorse_ssd_detect.py)


 

 

下载文件

下载地址: https://github.com/tensorflow/models

也可以使用我上传的里面有数据集和预训练文件 和 测试图片,文件有点大分卷下载了,要都下载下来一起解压

下载地址:https://download.csdn.net/download/ourkix/12068490

下载地址:https://download.csdn.net/download/ourkix/12068504

 

下载后得到一个 models-master.zip 文件,解压后移动到 (关于如何在文件查看其中看到隐藏的文件 Ctrl + H 快捷键)

/home/nvidia/.local/lib/python3.6/site-packages/tensorflow

 文件夹下,并重命名为 models

 

如果用我上传的,下载解压后是个models文件夹,里面还有个models,进去吧里面的models复制到

/home/nvidia/.local/lib/python3.6/site-packages/tensorflow

 文件夹下

依赖安装 如按之前博客来的话 应该已经安装好了

python3 -m pip install pillow --user
python3 -m pip install lxml --user
python3 -m pip install matplotlib --user
python3 -m pip install pandas --user

 

这里查看自己是否有安装 protobuf

protoc --version

出现

libprotoc 3.0.0

 代表有安装

如没安装

sudo apt-get install -y python3-protobuf
#也可以用pip
python3 -m pip install protobuf --user

进入 models/research/ 目录,并编译 protobuf (这里可能会报错 没有pandas 库 安装就是了)

cd /home/nvidia/.local/lib/python3.6/site-packages/tensorflow/models/research
protoc object_detection/protos/*.proto --python_out=.

安装 object_detection 库

python3 setup.py build
python3 setup.py install

设置 PYTHONPATH

编辑  .bashrc文件

sudo gedit ~/.bashrc

 最后加上

export PYTHONPATH=$PYTHONPATH:/home/nvidia/.local/lib/python3.6/site-packages/tensorflow/models/research
export PYTHONPATH=$PYTHONPATH:/home/nvidia/.local/lib/python3.6/site-packages/tensorflow/models/research/slim

保存,使环境生效

source ~/.bashrc

测试 object_detection 库是否安装成功

cd /home/nvidia/.local/lib/python3.6/site-packages/tensorflow/models/research
python3 object_detection/builders/model_builder_test.py

运行测试目标检测脚本测试 在object_detection目录下有个 object-detection-turorial.ipynb 这里不用jupyter-notebook,改用python,更方便。

新建一个文件 object-detection-turorial.py

touch object-detection-turorial.py

编辑,写入

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
import matplotlib

from distutils.version import StrictVersion
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image

# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from object_detection.utils import ops as utils_ops

if StrictVersion(tf.__version__) < StrictVersion('1.9.0'):
  raise ImportError('Please upgrade your TensorFlow installation to v1.9.* or later!')



import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile

from distutils.version import StrictVersion
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image

# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from object_detection.utils import ops as utils_ops

if StrictVersion(tf.__version__) < StrictVersion('1.9.0'):
  raise ImportError('Please upgrade your TensorFlow installation to v1.9.* or later!')



from utils import label_map_util

from utils import visualization_utils as vis_util


global output_num
global output_img_dic

matplotlib.use('TkAgg')

# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'

# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_FROZEN_GRAPH = MODEL_NAME + '/frozen_inference_graph.pb'

# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')

print(PATH_TO_LABELS)


# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]

# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)

output_num = 1
output_img_dic = r'\output_images'










opener = urllib.request.URLopener()
print("--\n")
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
print("--\n")
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
  file_name = os.path.basename(file.name)
  if 'frozen_inference_graph.pb' in file_name:
    tar_file.extract(file, os.getcwd())

print("--\n")


detection_graph = tf.Graph()
with detection_graph.as_default():
  od_graph_def = tf.compat.v1.GraphDef()
  with tf.io.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:
    serialized_graph = fid.read()
    od_graph_def.ParseFromString(serialized_graph)
    tf.import_graph_def(od_graph_def, name='')

print("--\n")

category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)

print("--\n")

def load_image_into_numpy_array(image):
  (im_width, im_height) = image.size
  return np.array(image.getdata()).reshape(
      (im_height, im_width, 3)).astype(np.uint8)






def run_inference_for_single_image(image, graph):
  with graph.as_default():
    with tf.compat.v1.Session() as sess:
      # Get handles to input and output tensors
      ops = tf.compat.v1.get_default_graph().get_operations()
      all_tensor_names = {output.name for op in ops for output in op.outputs}
      tensor_dict = {}
      for key in [
          'num_detections', 'detection_boxes', 'detection_scores',
          'detection_classes', 'detection_masks'
      ]:
        tensor_name = key + ':0'
        if tensor_name in all_tensor_names:
          tensor_dict[key] = tf.compat.v1.get_default_graph().get_tensor_by_name(
              tensor_name)
      if 'detection_masks' in tensor_dict:
        # The following processing is only for single image
        detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
        detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
        # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
        real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
        detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
        detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
        detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
            detection_masks, detection_boxes, image.shape[0], image.shape[1])
        detection_masks_reframed = tf.cast(
            tf.greater(detection_masks_reframed, 0.5), tf.uint8)
        # Follow the convention by adding back the batch dimension
        tensor_dict['detection_masks'] = tf.expand_dims(
            detection_masks_reframed, 0)
      image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')

      # Run inference
      output_dict = sess.run(tensor_dict,
                             feed_dict={image_tensor: np.expand_dims(image, 0)})

      # all outputs are float32 numpy arrays, so convert types as appropriate
      output_dict['num_detections'] = int(output_dict['num_detections'][0])
      output_dict['detection_classes'] = output_dict[
          'detection_classes'][0].astype(np.uint8)
      output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
      output_dict['detection_scores'] = output_dict['detection_scores'][0]
      if 'detection_masks' in output_dict:
        output_dict['detection_masks'] = output_dict['detection_masks'][0]
  return output_dict




for image_path in TEST_IMAGE_PATHS:
  image = Image.open(image_path)
  # the array based representation of the image will be used later in order to prepare the
  # result image with boxes and labels on it.
  image_np = load_image_into_numpy_array(image)
  # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
  image_np_expanded = np.expand_dims(image_np, axis=0)
  # Actual detection.
  output_dict = run_inference_for_single_image(image_np, detection_graph)
  # Visualization of the results of a detection.
  vis_util.visualize_boxes_and_labels_on_image_array(
      image_np,
      output_dict['detection_boxes'],
      output_dict['detection_classes'],
      output_dict['detection_scores'],
      category_index,
      instance_masks=output_dict.get('detection_masks'),
      use_normalized_coordinates=True,
      line_thickness=8)
  plt.figure(figsize=IMAGE_SIZE)
  print(1,image_np)
  plt.imshow(image_np)
  plt.show()
  
  if not os.path.exists(output_img_dic):
      os.mkdir(output_img_dic)
  output_img_path = os.path.join(output_img_dic,str(output_num)+".png")
  plt.savefig(output_img_path)

保存,运行

python3 object-detection-turorial.py

等待运行,nano运行比较久,要下载文件什么的,等个2-3分钟。

 

训练自己的数据集

    生成tfrecord文件

VOC数据集目录结构是这样的

我在object_detection目录下建立了ssd_model目录,里面放了VOCdeckit,我会提供整个models文件夹内容(包括预训练模型,海马数据集,测试数据),你们可以按我的来

|--VOCdevkit

           |--VOC2007

                    |--Annotations

                    |--ImageSets

                              |--Layout

                              |--Main

                              |--Segmentation

                    |--JPEGImages

1. 在自己的voc数据格式文件夹内,新建 train_test_split.py 把xml文件数据集分为了train、test、validation三部分,并存储在Annotations文件夹中,训练验证集占80%,测试集占20%。训练集占训练验证集的80%。代码如下:

import os  
import random  
import time  
import shutil

xmlfilepath=r'./Annotations'  
saveBasePath=r"./Annotations"

trainval_percent=0.8  
train_percent=0.8  
total_xml = os.listdir(xmlfilepath)  
num=len(total_xml)  
list=range(num)  
tv=int(num*trainval_percent)  
tr=int(tv*train_percent)  
trainval= random.sample(list,tv)  
train=random.sample(trainval,tr)  
print("train and val size",tv)  
print("train size",tr) 

start = time.time()

test_num=0  
val_num=0  
train_num=0  

for i in list:  
    name=total_xml[i]
    if i in trainval:  #train and val set 
        if i in train: 
            directory="train"  
            train_num += 1  
            xml_path = os.path.join(os.getcwd(), 'Annotations/{}'.format(directory))  
            if(not os.path.exists(xml_path)):  
                os.mkdir(xml_path)  
            filePath=os.path.join(xmlfilepath,name)  
            newfile=os.path.join(saveBasePath,os.path.join(directory,name))  
            shutil.copyfile(filePath, newfile)
        else:
            directory="validation"  
            xml_path = os.path.join(os.getcwd(), 'Annotations/{}'.format(directory))  
            if(not os.path.exists(xml_path)):  
                os.mkdir(xml_path)  
            val_num += 1  
            filePath=os.path.join(xmlfilepath,name)   
            newfile=os.path.join(saveBasePath,os.path.join(directory,name))  
            shutil.copyfile(filePath, newfile)

    else:
        directory="test"  
        xml_path = os.path.join(os.getcwd(), 'Annotations/{}'.format(directory))  
        if(not os.path.exists(xml_path)):  
                os.mkdir(xml_path)  
        test_num += 1  
        filePath=os.path.join(xmlfilepath,name)  
        newfile=os.path.join(saveBasePath,os.path.join(directory,name))  
        shutil.copyfile(filePath, newfile)

end = time.time()  
seconds=end-start  
print("train total : "+str(train_num))  
print("validation total : "+str(val_num))  
print("test total : "+str(test_num))  
total_num=train_num+val_num+test_num  
print("total number : "+str(total_num))  
print( "Time taken : {0} seconds".format(seconds))

2. 把xml转换成csv文件,xml_to_csv.py 将生成的csv文件放在 object_detection/data/

import os  
import glob  
import pandas as pd  
import xml.etree.ElementTree as ET 

def xml_to_csv(path):  
    xml_list = []  
    for xml_file in glob.glob(path + '/*.xml'):  
        tree = ET.parse(xml_file)  
        root = tree.getroot()
        
        print(root.find('filename').text)  
        for member in root.findall('object'): 
            value = (root.find('filename').text,  
                int(root.find('size')[0].text),   #width  
                int(root.find('size')[1].text),   #height  
                member[0].text,  
                int(member[4][0].text),  
                int(float(member[4][1].text)),  
                int(member[4][2].text),  
                int(member[4][3].text)  
                )  
            xml_list.append(value)
    column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
    xml_df = pd.DataFrame(xml_list, columns=column_name)  
    return xml_df      

def main():  
    for directory in ['train','test','validation']:  
        xml_path = os.path.join(os.getcwd(), 'Annotations/{}'.format(directory))  

        xml_df = xml_to_csv(xml_path)  
        # xml_df.to_csv('whsyxt.csv', index=None)  
        xml_df.to_csv('/home/nvidia/.local/lib/python3.6/site-packages/tensorflow/models/research/object_detection/data/seahorse_{}_labels.csv'.format(directory), index=None)  
        print('Successfully converted xml to csv.')

main()  

3. 生成tfrecord文件,在research目录下建立generate_tfrecord.py

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

#Usage:
  # From tensorflow/models/
  # Create train data:
  #python generate_tfrecord.py --csv_input=data/tv_vehicle_labels.csv  --output_path=train.record
  # Create test data:
  #python generate_tfrecord.py --csv_input=data/test_labels.csv  --output_path=test.record



import os
import io
import pandas as pd
import tensorflow as tf

from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict

os.chdir('/home/nvidia/.local/lib/python3.6/site-packages/tensorflow/models/research/')

flags = tf.app.flags
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
FLAGS = flags.FLAGS


# TO-DO replace this with label map
def class_text_to_int(row_label):
        # 你的所有类别
    if row_label == 'seahorse':
            return 1
    else:
        return None

def split(df, group):
    data = namedtuple('data', ['filename', 'object'])
    gb = df.groupby(group)
    return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]


def create_tf_example(group, path):
    with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
        encoded_jpg = fid.read()
    encoded_jpg_io = io.BytesIO(encoded_jpg)
    image = Image.open(encoded_jpg_io)
    width, height = image.size

    filename = group.filename.encode('utf8')
    image_format = b'jpg'
    xmins = []
    xmaxs = []
    ymins = []
    ymaxs = []
    classes_text = []
    classes = []

    for index, row in group.object.iterrows():
        xmins.append(row['xmin'] / width)
        xmaxs.append(row['xmax'] / width)
        ymins.append(row['ymin'] / height)
        ymaxs.append(row['ymax'] / height)
        classes_text.append(row['class'].encode('utf8'))
        classes.append(class_text_to_int(row['class']))

    tf_example = tf.train.Example(features=tf.train.Features(feature={
        'image/height': dataset_util.int64_feature(height),
        'image/width': dataset_util.int64_feature(width),
        'image/filename': dataset_util.bytes_feature(filename),
        'image/source_id': dataset_util.bytes_feature(filename),
        'image/encoded': dataset_util.bytes_feature(encoded_jpg),
        'image/format': dataset_util.bytes_feature(image_format),
        'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
        'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
        'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
        'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
        'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
        'image/object/class/label': dataset_util.int64_list_feature(classes),
    }))
    return tf_example


def main(_):
    writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
    path = os.path.join(os.getcwd(), 'object_detection/ssd_model/VOCdevkit/VOC2007/JPEGImages/')
    examples = pd.read_csv(FLAGS.csv_input)
    grouped = split(examples, 'filename')
    num = 0
    for group in grouped:
        num += 1
        tf_example = create_tf_example(group, path)
        writer.write(tf_example.SerializeToString())
        if (num % 100 == 0):    # 每完成100个转换,打印一次
            print(num)

    writer.close()
    output_path = os.path.join(os.getcwd(), FLAGS.output_path)
    print('Successfully created the TFRecords: {}'.format(output_path))


if __name__ == '__main__':
    tf.app.run()

主要是在 row_label 这里要添加上你标注的类别,字符串 row_label 应于labelImg中标注的名称相同。同样 path 为图片的路径。

执行生成前要去改一下cvs文件,把3个文件里面的jpeg改成jpg,这里是我图片后缀问题,不改会报错。

cd /home/nvidia/.local/lib/python3.6/site-packages/tensorflow/models/research

python3 generate_tfrecord.py --csv_input=object_detection/data/seahorse_train_labels.csv --output_path=object_detection/data/seahorse_train.tfrecord

generate_tfrecord.py 需要在research目录下,也就是object_detection的上级目录,因为在脚本中使用了 object_detection.utils,如果在 object_detection 下执行命令会报错(No module named object_detection)。

类似的,我们可以输入如下命令,将验证集和测试集也转换为tfrecord格式。

python3 generate_tfrecord.py --csv_input=object_detection/data/seahorse_validation_labels.csv --output_path=object_detection/data/seahorse_validation.tfrecord
python3 generate_tfrecord.py --csv_input=object_detection/data/seahorse_test_labels.csv --output_path=object_detection/data/seahorse_test.tfrecord

 

训练

1. 在object_detection/data文件夹下创建标签分类的配置文件(labelmap.pbtxt),需要检测几种目标,将创建几个id,代码如下:

item {
  id: 1    # id 从1开始编号
  name: 'seahorse'
}

2. 配置管道配置文件,找到object_detection/samples/config/ssd_mobilenet_v1_coco.config,复制到data文件夹下。修改后的代码如下:

# SSD with Mobilenet v1 configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.

model {
  ssd {
#修改,分类的总数
    num_classes: 2
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    anchor_generator {
      ssd_anchor_generator {
        num_layers: 6
        min_scale: 0.2
        max_scale: 0.95
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.3333
      }
    }
    image_resizer {
      fixed_shape_resizer {
        height: 300
        width: 300
      }
    }
    box_predictor {
      convolutional_box_predictor {
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.8
        kernel_size: 1
        box_code_size: 4
        apply_sigmoid_to_scores: false
        conv_hyperparams {
          activation: RELU_6,
          regularizer {
            l2_regularizer {
              weight: 0.00004
            }
          }
          initializer {
            truncated_normal_initializer {
              stddev: 0.03
              mean: 0.0
            }
          }
          batch_norm {
            train: true,
            scale: true,
            center: true,
            decay: 0.9997,
            epsilon: 0.001,
          }
        }
      }
    }
    feature_extractor {
      type: 'ssd_mobilenet_v1'
      min_depth: 16
      depth_multiplier: 1.0
      conv_hyperparams {
        activation: RELU_6,
        regularizer {
          l2_regularizer {
            weight: 0.00004
          }
        }
        initializer {
          truncated_normal_initializer {
            stddev: 0.03
            mean: 0.0
          }
        }
        batch_norm {
          train: true,
          scale: true,
          center: true,
          decay: 0.9997,
          epsilon: 0.001,
        }
      }
    }
    loss {
      classification_loss {
        weighted_sigmoid {
        }
      }
      localization_loss {
        weighted_smooth_l1 {
        }
      }
      hard_example_miner {
        num_hard_examples: 3000
        iou_threshold: 0.99
        loss_type: CLASSIFICATION
        max_negatives_per_positive: 3
        min_negatives_per_image: 0
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }
    normalize_loss_by_num_matches: true
    post_processing {
      batch_non_max_suppression {
        score_threshold: 1e-8
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 100
      }
      score_converter: SIGMOID
    }
  }
}

train_config: {
#修改,批次大小,nano的话在图形界面下跑4会出现卡顿OOM,内存不足,2的话勉强可以跑。可以在不启动图形界面跑会好些
  batch_size: 2
  optimizer {
    rms_prop_optimizer: {
      learning_rate: {
        exponential_decay_learning_rate {
#修改,初始学习率
          initial_learning_rate: 0.0001
          decay_steps: 800720
          decay_factor: 0.95
        }
      }
      momentum_optimizer_value: 0.9
      decay: 0.9
      epsilon: 1.0
    }
  }
#修改,预训练模型
  fine_tune_checkpoint: "ssd_model/ssd_mobilenet/model.ckpt"
  from_detection_checkpoint: true
  # Note: The below line limits the training process to 200K steps, which we
  # empirically found to be sufficient enough to train the pets dataset. This
  # effectively bypasses the learning rate schedule (the learning rate will
  # never decay). Remove the below line to train indefinitely.
#修改,迭代总次数
  num_steps: 5000
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  data_augmentation_options {
    ssd_random_crop {
    }
  }
}

train_input_reader: {
  tf_record_input_reader {
#修改,训练数据 按理这里是seahorse_train.tfrecord
    input_path: "data/seahorse.tfrecord"
  }
#修改,labelmap路径
  label_map_path: "data/labelmap.pbtxt"
}

eval_config: {
  num_examples: 8000
  # Note: The below line limits the evaluation process to 10 evaluations.
  # Remove the below line to evaluate indefinitely.
  max_evals: 10
}

eval_input_reader: {
  tf_record_input_reader {
#修改,训练验证数据
    input_path: "data/seahorse_validation.tfrecord"
  }
#修改,labelmap路径
  label_map_path: "data/labelmap.pbtxt"
  shuffle: false
  num_readers: 1
}

3.下载预训练模型(用我上传的文件的话,已经在object_detection/ssd_model/ssd_mobilenet目录下了)

下载 ssd_mobilenet 至 ssd_model/ 目录下,解压并重命名为 ssd_mobilenet

ssd_mobilenet: http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_11_06_2017.tar.gz

tar zxvf ssd_mobilenet_v1_coco_11_06_2017.tar.gz
mv ssd_mobilenet_v1_coco_11_06_2017 ssd_mobilenet

将 ssd_mobilenet_v1_coco.config 中 fine_tune_checkpoint 修改为如下格式的路径(上面已经改好)

fine_tune_checkpoint: "ssd_model/ssd_mobilenet/model.ckpt"

 

关闭图形界面,训练时再关闭(看你的平台情况而定,训练不了就关闭)ps:我nano在图形界面勉强可以训练

# ubuntu关闭图形用户界面
sudo systemctl set-default multi-user.target
sudo reboot
 
# ubuntu启用图形用户界面
sudo systemctl set-default graphical.target

4. 开始训练(这个train.py 文件可能就在object_detection目录下 也可能在object_detection/legacy下)

python3 legacy/train.py --logtostderr --train_dir=training/ --pipeline_config_path=data/ssd_mobilenet_v1_coco.config

5.训练完成后,运行 export_inference_graph.py 脚本将训练出的模型固化成 TensorFlow 的 .pb 模型,其中 trained_checkpoint_prefix 要设置成 model.ckpt-[step],其中 step 要与训练迭代次数相同

python3 ./object_detection/export_inference_graph.py --input_type image_tensor --pipeline_config_path ./object_detection/ssd_model/ssd_mobilenet_v1_coco.config --trained_checkpoint_prefix ./object_detection/training/model.ckpt-5000 --output_directory ./object_detection/ssd_model/model/

转换后生成的 .pb 模型位于 object_detection/ssd_model/model/ 目录下

6.测试模型(在object_detection目录下创建文件seahorse_ssd_detect.py)

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile

from distutils.version import StrictVersion
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image

# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from object_detection.utils import ops as utils_ops

import cv2

if StrictVersion(tf.__version__) < StrictVersion('1.9.0'):
  raise ImportError('Please upgrade your TensorFlow installation to v1.9.* or later!')



from utils import label_map_util

from utils import visualization_utils as vis_util


global output_num
global output_img_dic

matplotlib.use('TkAgg')



# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_FROZEN_GRAPH =  'ssd_model/model/frozen_inference_graph.pb'

# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'labelmap.pbtxt')

print(PATH_TO_LABELS)


# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(3, 7) ]

# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)

output_num = 1
output_img_dic = r'\output_images'












detection_graph = tf.Graph()
with detection_graph.as_default():
  od_graph_def = tf.compat.v1.GraphDef()
  with tf.io.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:
    serialized_graph = fid.read()
    od_graph_def.ParseFromString(serialized_graph)
    tf.import_graph_def(od_graph_def, name='')

print("--\n")

category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)

print("--\n")

def load_image_into_numpy_array(image):
  (im_width, im_height) = image.size
  return np.array(image.getdata()).reshape(
      (im_height, im_width, 3)).astype(np.uint8)






def run_inference_for_single_image(image, graph):
  with graph.as_default():
    with tf.compat.v1.Session() as sess:
      # Get handles to input and output tensors
      ops = tf.compat.v1.get_default_graph().get_operations()
      all_tensor_names = {output.name for op in ops for output in op.outputs}
      tensor_dict = {}
      for key in [
          'num_detections', 'detection_boxes', 'detection_scores',
          'detection_classes', 'detection_masks'
      ]:
        tensor_name = key + ':0'
        if tensor_name in all_tensor_names:
          tensor_dict[key] = tf.compat.v1.get_default_graph().get_tensor_by_name(
              tensor_name)
      if 'detection_masks' in tensor_dict:
        # The following processing is only for single image
        detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
        detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
        # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
        real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
        detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
        detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
        detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
            detection_masks, detection_boxes, image.shape[0], image.shape[1])
        detection_masks_reframed = tf.cast(
            tf.greater(detection_masks_reframed, 0.5), tf.uint8)
        # Follow the convention by adding back the batch dimension
        tensor_dict['detection_masks'] = tf.expand_dims(
            detection_masks_reframed, 0)
      image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')

      # Run inference
      output_dict = sess.run(tensor_dict,
                             feed_dict={image_tensor: np.expand_dims(image, 0)})

      # all outputs are float32 numpy arrays, so convert types as appropriate
      output_dict['num_detections'] = int(output_dict['num_detections'][0])
      output_dict['detection_classes'] = output_dict[
          'detection_classes'][0].astype(np.uint8)
      output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
      output_dict['detection_scores'] = output_dict['detection_scores'][0]
      if 'detection_masks' in output_dict:
        output_dict['detection_masks'] = output_dict['detection_masks'][0]
  return output_dict






def detect(imgfile):
    #origimg = cv2.imread(imgfile)
    image = Image.open(imgfile)

    image_np = load_image_into_numpy_array(image)
    # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
    image_np_expanded = np.expand_dims(image_np, axis=0)
    # Actual detection.
    output_dict = run_inference_for_single_image(image_np, detection_graph)
    # Visualization of the results of a detection.
    vis_util.visualize_boxes_and_labels_on_image_array(
        image_np,
        output_dict['detection_boxes'],
        output_dict['detection_classes'],
        output_dict['detection_scores'],
        category_index,
        instance_masks=output_dict.get('detection_masks'),
        use_normalized_coordinates=True,
        line_thickness=8)
    plt.figure(figsize=IMAGE_SIZE)
    print(1,image_np) 

    cv2.imshow("SSD", image_np)
 
    k = cv2.waitKey(0) & 0xff
        #Exit if ESC pressed
    if k == 27 : return False
    return True

test_dir = "/home/nvidia/.local/lib/python3.6/site-packages/tensorflow/models/research/object_detection/seahorseImages"

for f in os.listdir(test_dir):
    if detect(test_dir + "/" + f) == False:
       break

  
#  if not os.path.exists(output_img_dic):
#      os.mkdir(output_img_dic)
#  output_img_path = os.path.join(output_img_dic,str(output_num)+".png")
#  plt.savefig(output_img_path)

测试(任意键下一张图,ESC退出)

python3 seahorse_ssd_detect.py

 

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/ourkix/article/details/103778044

智能推荐

Qt/C++开发经验小技巧206-210_设置插件的目录还可以通过在main函数最前面写 qputenv("path", qstring("%-程序员宅基地

文章浏览阅读1.5k次,点赞6次,收藏19次。有时候需要对文本进行分散对齐显示,相当于无论文字多少,尽可能占满整个空间平摊占位宽度,但是在对支持对齐方式的控件比如QLabel调用 setAlignment(Qt::AlignJustify | Qt::AlignVCenter) 设置分散对齐会发现没有任何效果,这个时候就要考虑另外的方式比如通过控制字体的间距来实现分散对齐效果。QString text = "测试分散对齐内容";//计算当前文本在当前字体下占用的宽度QFont font = ui->label->font();i._设置插件的目录还可以通过在main函数最前面写 qputenv("path", qstring("%1;%2").

数据结构预算法(六) 数组和矩阵(1)_构造一四行五列的二维数组-程序员宅基地

文章浏览阅读412次。数组:抽象数据类型:数组的操作:1.存值 get(index)2.取值 set(index, value)这两个操作定义了抽象数据类型arrayc++数组的索引,且数组时c++的标准数据结构行主映射和列主映射 :数组的应用需要将数组的元素序列化,按照一维排列,因为数组元素一次只能输出或者输入一个。因此必须确定一个输入输出的顺序(即映射关系)。不规则的..._构造一四行五列的二维数组

mac关闭向日葵客户端自启动的方法_mac sunloginclient_desktop 后台自动启动-程序员宅基地

文章浏览阅读5.5k次。自动装了远程控制工具->向日葵客户端后,虽然给我带来了便利,但是也给我带来了个困扰,每次开机,向日葵的客户端都会自启动,去官网问了客服和搜索了很多帖子,方法都不试用,最后经过很长一段时间的摸索,发现了正确的关闭方式。1、首先打开一个 访达窗口2、在访达窗口的右上角搜索框内, 输入:sunlogin 搜索 搜索到如下几个文件: com.oray.sunlogin.agent.plist com.oray.sunlogin.startup.plist ..._mac sunloginclient_desktop 后台自动启动

RabbitMQ-集群模式简介_rabbitmq有哪些集群模式-程序员宅基地

文章浏览阅读3.5k次。文章目录1. 主备模式2. 远程模式3. 镜像模式(现企业中常用模式)4. 多活模式(实现异地数据复制的主流模式)1. 主备模式主备模式:用在并发和数据量不高的情况下,主备模式也称为Warren模式。当主节点宕机时,备用节点会充当主节点的角色,提供服务。主备和主从的区别:主备模式:是读写都在主节点上,备用节点是不进行任何的读写操作的。主从模式:写在主节点,从节点提供读操作。H..._rabbitmq有哪些集群模式

让ubuntu18.04中python命令指向python3_ubuntu设置软链将python指向python3.6-程序员宅基地

文章浏览阅读2.4k次,点赞2次,收藏7次。发现新装的ubuntu18.04版本中默认安装了python3.6,位置是/usr/lib/python3.6。$python --version 显示没有$python3 --version 显示有3.6版本其实在/usr/lib目录下也有python2.7版本,不知道是没安装或没建立连接反正我的python显示没有该..._ubuntu设置软链将python指向python3.6

"border:0"与"border:none"的区别_border:none 以及 border:0 的区别-程序员宅基地

文章浏览阅读5.3k次。"border:0"与"border:none"的差异主要体现在性能差异和兼容差异。1.性能差异"border:0"表示把border定义为0px。虽然0px在页面上看不到,但浏览器会对border进行渲染,结果会得到一个0px的border。"border:none"表示把border定义为“无”,浏览器不会渲染它。简单来说:"border:0"需要占用内存,而"border:none&q_border:none 以及 border:0 的区别

随便推点

Sharding-Proxy——分库分表+读写分离_shardingproxy 分库分表+读写分离-程序员宅基地

文章浏览阅读1.1k次。一、简介sharding-proxy定位为透明化的数据库代理端,提供封装了数据库二进制协议的服务端版本,用于完成对异构语言的支持。 目前先提供MySQL/PostgreSQL版本,它可以使用任何兼容MySQL/PostgreSQL协议的访问客户端(如:MySQL Command Client, MySQL Workbench, Navicat等)操作数据,对DBA更加友好。向应用程序完全透明,可直接当做MySQL/PostgreSQL使用。适用于任何兼容MySQL/PostgreSQL协议的的客户端_shardingproxy 分库分表+读写分离

DWR介绍-程序员宅基地

文章浏览阅读299次。_dwr

java入门学习(十五)运算语句while do while_javawhile语句 - 奇怪的运算式-程序员宅基地

文章浏览阅读867次。欢迎来我的博客www.taomaipin.comwhile 翻译成中文就是“当…..时候”,其实它和for的中文意思一样,当条件成立时执行while中的代码块,那么while语句的的语法是:while(循环条件){循环体}语法说明:和if语句类似,如果不是用代码块的结构,则只有while后面的第一个语句是循环体语句。在该语法中,要求循环条件的类型为boolean类型,指循环成立_javawhile语句 - 奇怪的运算式

element-ui 关闭自动上传设置成手动上传_au-uplod设置了不自动上传-程序员宅基地

文章浏览阅读3.9k次。属性上加上一个:auto-upload="false"_au-uplod设置了不自动上传

OSSIM-新遥感 开源遥感_open source software image map-程序员宅基地

文章浏览阅读6.8k次。OSSIM(Open Source Software Image Map)是一个用于遥感、图像处理、地理信息系统、摄影测量领域的高性能软件。OSSIM作为一个成熟的开源软件库,其设计目的是为摄影测量与遥感软件包的开发人员提供一套整合的并且是最佳的方法及流程。 遥感技术广泛应用于环境监测、资源勘探、土地规划与利用、地图制图、灾害动态监测、 农作物估产、气象预报等领域,对经济和社会发展有着重大的影_open source software image map

LTE上行物理层传输机制(4)-UCI在PUCCH和PUSCH中的传输_lte上行pusch pucch-程序员宅基地

文章浏览阅读3.7w次,点赞20次,收藏125次。1.什么是UCI在下行物理信道中存在着PDCCH控制信道,根据其中承载信息的不同,携带着各种不同的DCI格式,比如DCI0、DCI1A等等,那么在上行物理信道中也存在着类似的控制信道,我们叫做PUCCH(Physical Uplink Control Channel)信道。同样根据承载信息的不同,PUCCH可以携带各种不同的UCI(Uplink Control Information)。与下行DC_lte上行pusch pucch

推荐文章

热门文章

相关标签