webshell检测方式深度剖析 ---统计学特征检测_neopi-程序员宅基地

技术标签: 恶意脚本检测  

概论

该篇文章讲述了NeoPI如何利用统计学特征来检测webshell,笔者认为NeoPI选择的这些统计学方法在webshell检测上有些鸡肋,没有太大的实用效果。

反而其中的各种统计学方法值得学习一下,因此文章会重点讲解这些统计学特征的原理,以求可以举一反三,并应用在其他领域。

统计学特征

NeoPi使用以下五种统计学特征检测方法,下面分别来分析各种方法的原理和代码实现(代码部分只选择了核心代码并附加了注释,方便大家阅读。):

重合指数

重合指数法是密码分析学的一种工具,主要用于多表代换的密码破译。
以纯英文文本为例,它的基本原理可以定义如下:

X = x 1 x 2 . . . x n X=x_1x_2...x_n X=x1x2...xn是一个长度为 n n n的英文字符串, X X X的重合指数定义为 X X X中的两个随机元素相同的概率,记为 I c ( X ) I_c(X) Ic(X)。假设英文字母 A A A B B B C C C,…在X中的出现次数分别为 f 1 f_1 f1 f 2 f_2 f2,…, f 25 f_{25} f25。显然,从X中任意选择两个元素共有 C 25 2 C^{2}_{25} C252种组合,选取的元素同时为第 i i i个英文字母的情况有 C f i 2 C^{2}_{f_i} Cfi2种组合, 0 < = i < = 25 0<=i<=25 0<=i<=25。因此,有
I c ( X ) = ∑ i = 0 25 ( C f 2 / C n 2 ) = ∑ i = 0 25 ( f i ( f i − 1 ) / n ( n − 1 ) ) I{_c}(X) =\sum_{i=0}^{25}(C_f^2/C_n^2) = \sum_{i=0}^{25}(f_i(f_i-1)/n(n-1)) Ic(X)=i=025(Cf2/Cn2)=i=025(fi(fi1)/n(n1))

根据统计,在英文中各个字母出现的频率是特定的,如下表 :

字母 概率 字母 概率
A 0.082 N 0.067
B 0.015 O 0.075
C 0.028 P 0.019
D 0.043 Q 0.001
E 0.127 R 0.060
F 0.022 S 0.063
G 0.020 T 0.091
H 0.061 U 0.028
I 0.070 V 0.010
J 0.002 W 0.002
K 0.008 X 0.001
L 0.040 Y 0.020
M 0.024 Z 0.001

将英文字母A,B,C,…,Z的期望概率分别记为 p 0 , p 1 , p 2 , . . . , p 25 p_0,p_1,p_2,...,p_{25} p0p1p2...p25,则有一段正常英文文本的期望重合指数为 I c ( X ) ≈ ∑ i = 0 25 ( p i 2 ) = 0.065 I_c(X)\approx \sum_{i=0}^{25}(p_i^2) = 0.065 Ic(X)i=025(pi2)=0.065

如上所述,一个纯英文的且编码风格良好(一般在软件开发时,会采用统一的函数及有意义的变量名编写)的源代码计算出的重合指数会趋近于0.065。考虑到文件中的中文注释,虽然计算出的重合指数会偏离0,065,但同样会趋于相似,呈现正态分布。

而加密或者混淆后的webshell 与原 web 应用不相关,其字符的排列通常没有特征可言,计算出的重合指数与正常文件的重合指数相差较大(混淆后的重合指数通常较小),一定程度上,可以作为webshell判定的依据。

重合指数的计算比较简单,代码如下:

# @param data 从文件中取出的全部内容数据
 # @return ic 返回计算好的重合指数
 def index_of_coincidence(data):
       """计算文件内容的重合指数"""
       if not data:
           return 0
       char_count = 0       # 保存在data中任意选择两个字符,这两个字符相同的情形的数量
       total_char_count = 0 # 保存在data所有字符的数量

        # 遍历单字节代表的256字符
       for x in range(256):
           char = chr(x)
           charcount = data.count(char)              # 计算当前字符在data中的数量
           char_count += charcount * (charcount - 1) # 计算在data中任意选择两个字符,这两个字符都为当前字符的情形的数量,并累加
           total_char_count += charcount             # 计算当前字符在data中的数量,并累加
       
       # 按照重合指数的计算方法进行计算
       ic = float(char_count)/(total_char_count * (total_char_count - 1))
       return ic

信息熵

熵,是一个热力学的概念,用来度量封闭系统的混乱程度。但在历史的发展中,造就了它非常丰富的内涵,进入了很多学科的视野。

1948年,香农提出了“信息熵”的概念,解决了对信息的量化度量问题。信息量是对信息的度量,就跟时间的度量是秒一样,当我们考虑一个离散的随机变量x的时候,当我们观察到的这个变量的一个具体值的时候,我们接收到了多少信息呢?

多少信息用信息量来衡量,而我们接受到的信息量跟具体发生的事件有关。

信息的大小跟随机事件的概率有关。越小概率的事情发生了产生的信息量越大,如太阳从西边升起来了;越大概率的事情发生了产生的信息量越小,如太阳从东边升起来了(肯定发生,没什么信息量)。
信息熵的公式定义如下:

H ( X ) = − ∑ i = 1 N p ( x i ) l o g ( p ( x i ) ) H(X)=- \sum_{i=1}^{N}p(x_i)log(p(x_i)) H(X)=i=1Np(xi)log(p(xi))
其中, p ( x i ) 代 表 随 机 事 件 p(x_i)代表随机事件 p(xi) x i x_i xi的概率,对数一般以2为底。对应到文件熵上,一般使 p ( x i ) p(x_i) p(xi)为字符 x i x_i xi在文件内容中出现的概率。

那么类似于重合指数,加密混淆后的webshell通常通篇都是没有任何意义和规律的字符, 其通过计算公式得出的信息熵值会偏离平均值较大。

计算信息熵的代码如下:

# @param data 从文件中取出的全部内容数据
 # @return entropy 返回计算出的文件熵
def calculate(self,data):
       """计算文件信息熵."""

       if not data:
           return 0
           
       entropy = 0 # 保存最终熵值
       self.stripped_data =data.replace(' ', '') # 去掉文件内容中的空格
       
       # 遍历所有asci 256个字符
       for x in range(256):
           p_x = float(self.stripped_data.count(chr(x)))/len(self.stripped_data) # 计算单个字符出现的概率
           if p_x > 0:
               entropy += - p_x * math.log(p_x, 2) # 计算该字符的熵值并累加
       return entropy

最长单词

一般在软件开发时,其使用的字符串、函数名、变量名都会尽可能有规律和简短,但是,通过变形和加密往往会构造;超长的字符串, 通过检测代码中的最长字符串,并把最有可能是 webshell 的文件提供给管理员判断。

代码如下:

# @param data 从文件中取出的全部内容数据
# @return longest_word, longest 返回最长单词的内容和长度
def LongestWord(self,data):
       """查找文件内容中长度最长的单词"""
       if not data:
           return "", 0

       longest = 0 # 保存最长单词的长度
       longest_word = "" # 保存最长单词的内容
       
       words = re.split("[\s,\n,\r]", data) # 将文件内容按照空格和换行进行分词
       if words:
           for word in words:
               length = len(word)
               if length > longest: # 循环查找最长单词
                   longest = length
                   longest_word = word
       return longest_word,longest

恶意特征

在文件中搜索已知的恶意代码字符串片段,通过正则表达式,在文件内查找预定义的恶意特征。
这部分其实是静态检测,但是NeoPI也扩展添加了这部分的能力。

代码如下:

# @param data 从文件中取出的全部内容数据
# @return len(matches) 返回匹配的数量
def signature_nasty(self, data): 
       """查找文件的恶意特征"""
       if not data:
           return "", 0
       
       # 查找文件内下面所列的恶意函数 
       valid_regex = re.compile('(eval\(|file_put_contents|base64_decode|python_eval|exec\(|passthru|popen|proc_open|pcntl|assert\(|system\(|shell)', re.I)
       matches = re.findall(valid_regex, data)
       return len(matches)

压缩比

正常的代码通常编码风格良好,并且文件内有一定的空行和空格作为分隔,进行压缩时能有较大的压缩比。但是经过混淆后的代码通常没有空格和空行,而且字符顺序混乱,进行压缩时压缩比较小。

代码如下:

# @param data 从文件中取出的全部内容数据
# @return ratio 返回计算出的压缩比
def calculate(self, data):
       if not data:
           return "", 0
       compressed = zlib.compress(data)
       ratio =  float(len(data)) / float(len(compressed))
       self.results.append({
    "filename":filename, "value":ratio})
       return ratio

检测结果评测

NeoPI本身不给出一个文件是不是webshell的判断,它只是计算各种统计特征值,然后针对每一个特征值做出一个排名。在实际应用中,可以选择任意特征值的排名组合来判断。

为了让测试更有代表性,笔者采用如下策略:

首先进行如下形式化定义:

W m i n ( x ) = W o r d P r e s s 中 相 应 特 征 最 小 的 x 个 文 件 的 平 均 值 W_{min}(x) = WordPress中相应特征最小的x个文件的平均值 Wmin(x)=WordPressx
W m a x ( x ) = W o r d P r e s s 中 相 应 特 征 最 大 的 x 个 文 件 的 平 均 值 W_{max}(x) = WordPress中相应特征最大的x个文件的平均值 Wmax(x)=WordPressx
B m i n ( x ) = 300 个 黑 样 本 中 相 应 特 征 最 小 的 x 个 文 件 的 平 均 值 B_{min}(x) = 300个黑样本中相应特征最小的x个文件的平均值 Bmin(x)=300x
B m a x ( x ) = 300 个 黑 样 本 中 相 应 特 征 最 大 的 x 个 文 件 的 平 均 值 B_{max}(x) = 300个黑样本中相应特征最大的x个文件的平均值 Bmax(x)=300x

1、重合指数判断策略

2、信息熵判断策略

3、最长单词判断策略
同信息熵的判断策略

4、恶意特征
存在恶意特征则判定为webshell

5、压缩比
同信息熵的判断策略

实际测试结果如下:

统计特征 检出率 误报率
重合指数 94% 0%
信息熵 58% 0.5%
最长单词 42% 0%
恶意特征 79% 4%
压缩比 10% 0%

notes:由于NeoPI主要用来检测混淆webshell,所以笔者的阈值选择优先于黑样本和白样本中的混淆文件的特征值。

总结

NeoPi的检测重心在于识别混淆代码,它常常在识别模糊代码或者混淆编排的木马方面表现良好,但是也依赖于检测阈值的选取。同时,NeoPi的检测机制对未经模糊处理的代码检测能力较弱。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_31032141/article/details/107207911

智能推荐

linux devkmem 源码,linux dev/mem dev/kmem实现访问物理/虚拟内存-程序员宅基地

文章浏览阅读451次。dev/mem: 物理内存的全镜像。可以用来访问物理内存。/dev/kmem: kernel看到的虚拟内存的全镜像。可以用来访问kernel的内容。调试嵌入式Linux内核时,可能需要查看某个内核变量的值。/dev/kmem正好提供了访问内核虚拟内存的途径。现在的内核大都默认禁用了/dev/kmem,打开的方法是在 make menuconfig中选中 device drivers --> ..._dev/mem 源码实现

vxe-table 小众但功能齐全的vue表格组件-程序员宅基地

文章浏览阅读7.1k次,点赞2次,收藏19次。vxe-table,一个小众但功能齐全并支持excel操作的vue表格组件_vxe-table

(开发)bable - es6转码-程序员宅基地

文章浏览阅读62次。参考:http://www.ruanyifeng.com/blog/2016/01/babel.htmlBabelBabel是一个广泛使用的转码器,可以将ES6代码转为ES5代码,从而在现有环境执行// 转码前input.map(item => item + 1);// 转码后input.map(function (item) { return item..._让开发环境支持bable

FPGA 视频处理 FIFO 的典型应用_fpga 频分复用 视频-程序员宅基地

文章浏览阅读2.8k次,点赞6次,收藏29次。摘要:FPGA视频处理FIFO的典型应用,视频输入FIFO的作用,视频输出FIFO的作用,视频数据跨时钟域FIFO,视频缩放FIFO的作用_fpga 频分复用 视频

R语言:设置工作路径为当前文件存储路径_r语言设置工作目录到目标文件夹-程序员宅基地

文章浏览阅读575次。【代码】R语言:设置工作路径为当前文件存储路径。_r语言设置工作目录到目标文件夹

background 线性渐变-程序员宅基地

文章浏览阅读452次。格式:background: linear-gradient(direction, color-stop1, color-stop2, ...);<linear-gradient> = linear-gradient([ [ <angle> | to <side-or-corner>] ,]? &l..._background线性渐变

随便推点

【蓝桥杯省赛真题39】python输出最大的数 中小学青少年组蓝桥杯比赛 算法思维python编程省赛真题解析-程序员宅基地

文章浏览阅读1k次,点赞26次,收藏8次。第十三届蓝桥杯青少年组python编程省赛真题一、题目要求(注:input()输入函数的括号中不允许添加任何信息)1、编程实现给定一个正整数N,输出正整数N中各数位最大的那个数字。例如:N=132,则输出3。2、输入输出输入描述:只有一行,输入一个正整数N输出描述:只有一行,输出正整数N中各数位最大的那个数字输入样例:

网络协议的三要素-程序员宅基地

文章浏览阅读2.2k次。一个网络协议主要由以下三个要素组成:1.语法数据与控制信息的结构或格式,包括数据的组织方式、编码方式、信号电平的表示方式等。2.语义即需要发出何种控制信息,完成何种动作,以及做出何种应答,以实现数据交换的协调和差错处理。3.时序即事件实现顺序的详细说明,以实现速率匹配和排序。不完整理解:语法表示长什么样,语义表示能干什么,时序表示排序。转载于:https://blog.51cto.com/98..._网络协议三要素csdn

The Log: What every software engineer should know about real-time data's unifying abstraction-程序员宅基地

文章浏览阅读153次。主要的思想,将所有的系统都可以看作两部分,真正的数据log系统和各种各样的query engine所有的一致性由log系统来保证,其他各种query engine不需要考虑一致性,安全性,只需要不停的从log系统来同步数据,如果数据丢失或crash可以从log系统replay来恢复可以看出kafka系统在linkedin中的重要地位,不光是d..._the log: what every software engineer should know about real-time data's uni

《伟大是熬出来的》冯仑与年轻人闲话人生之一-程序员宅基地

文章浏览阅读746次。伟大是熬出来的  目录  前言  引言 时间熬成伟大:领导者要像狼一样坚忍   第一章 内圣外王——领导者的心态修炼  1. 天纵英才的自信心  2. 上天揽月的企图心  3. 誓不回头的决心  4. 宠辱不惊的平常心  5. 换位思考的同理心  6. 激情四射的热心  第二章 日清日高——领导者的高效能修炼  7. 积极主动,想到做到  8. 合理掌控自己的时间和生命  9. 制定目标,马..._当狼拖着受伤的右腿逃生时,右腿会成为前进的阻碍,它会毫不犹豫撕咬断自己的腿, 以

有源光缆AOC知识百科汇总-程序员宅基地

文章浏览阅读285次。在当今的大数据时代,人们对高速度和高带宽的需求越来越大,迫切希望有一种新型产品来作为高性能计算和数据中心的主要传输媒质,所以有源光缆(AOC)在这种环境下诞生了。有源光缆究竟是什么呢?应用在哪些领域,有什么优势呢?易天将为您解答!有源光缆(Active Optical Cables,简称AOC)是两端装有光收发器件的光纤线缆,主要构成部件分为光路和电路两部分。作为一种高性能计..._aoc 光缆

浏览器代理服务器自动配置脚本设置方法-程序员宅基地

文章浏览阅读2.2k次。在“桌面”上按快捷键“Ctrl+R”,调出“运行”窗口。接着,在“打开”后的输入框中输入“Gpedit.msc”。并按“确定”按钮。如下图 找到“用户配置”下的“Windows设置”下的“Internet Explorer 维护”的“连接”,双击选择“自动浏览器配置”。如下图 选择“自动启动配置”,并在下面的“自动代理URL”中填写相应的PAC文件地址。如下..._設置proxy腳本