图神经网络:(节点分类)KarateClub数据集上实现图神经网络_图神经网络节点分类示例-程序员宅基地

技术标签: # GNN  深度学习  pytorch  神经网络  

文章说明:
1)参考资料:PYG的文档。文档超链
2)博主水平不高,如有错误,还望批评指正。
3)我在百度网盘上传这篇文章的jupyter notebook以及有关文献。提取码8488。

文献阅读:

参考文献:SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS
中文翻译:用图神经网络进行半监督的分类

文献首先:介绍了其他前辈的工作。在损失函数中使用拉普拉斯正则化项。公式如下(打这个公式真费劲,还的学Latex): L = L 0 + λ L r e g \mathcal{L}=\mathcal{L}_{0}+\lambda\mathcal{L}_{reg} L=L0+λLreg with L r e g = ∑ i , j A i , j ∣ ∣ f ( X i ) − f ( X j ) ∣ ∣ 2 = f ( X ) T Δ f ( X ) \mathcal{L}_{reg}=\sum_{i,j}{A}_{i,j}||\mathcal{f}({X}_{i})-\mathcal{f}({X}_{j})||^{2}=\mathcal{f}(X)^{T}\Delta\mathcal{f}(X) Lreg=i,jAi,j∣∣f(Xi)f(Xj)2=f(X)TΔf(X)
符号说明: L \mathcal{L} L表示为损失函数。 L 0 \mathcal{ {L}_{0}} L0表示为有标签的损失(还有没标签的毕竟是半监督)。 λ \lambda λ表示为权重系数。 A i , j {A_{i,j}} Ai,j表示为图边。 f ( ⋅ ) \mathcal{f}(\cdot) f()表示为像神经网络的可微函数。 X X X表示为特征矩阵。 Δ = D − A \Delta=D-A Δ=DA表示为非规范化的拉普拉斯算子。 D D D表示为度的矩阵, D i , i = ∑ j A i , j D_{i,i}=\sum_{j}A_{i,j} Di,i=jAi,j
文章然后:简单说明使用上述公式需要有个假设:图中连接节点共享相同标签。于是作者这篇文章便就来了,为了解决这个问题,使用神经网络模型 f ( X , A ) f(X,A) f(X,A)编码图结构,避免使用显示基于图正则化。文章有两贡献,1.提出一种简单良好直接作用于图上的神经网络传播规则并且展示它是如何从谱图卷积的一阶逼近得到反馈。2.演示了基于图神经网络是如何分类的。
文章然后:具体开始阐述理论。 H l + 1 = σ ( D ~ − 1 2 A ~ D ~ − 1 2 H l W l ) H^{l+1}=\sigma(\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}H^{l}W^{l}) Hl+1=σ(D~21A~D~21HlWl)。(知道核心公式就好,其他细节跳过因为我看不懂)
符号说明: D i , i = ∑ j A i , j D_{i,i}=\sum_{j}A_{i,j} Di,i=jAi,j表示为度的矩阵。 A ~ = A + I N \tilde{A}=A+I_{N} A~=A+IN表示为邻接矩阵加上一个单位矩阵。 W l W^{l} Wl表示为权重系数。 σ \sigma σ表示为激活函数。 H l H^{l} Hl为第 l l l层的特征矩阵。 H 0 H^{0} H0即为 X X X
文章然后:进行代码分类实操,他们这里搭建了两层GCN。所以最后的公式为 Z = f ( X , A ) = s o f t m a x ( A ^ R e l u ( A ^ X W 0 ) W 1 ) Z=f(X,A)=softmax(\widehat{A}Relu(\widehat{A}XW^{0})W^{1}) Z=f(X,A)=softmax(A Relu(A XW0)W1)。这里 A ^ = D ~ − 1 2 A ~ D ~ − 1 2 \widehat{A}=\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}} A =D~21A~D~21。损失函数就使用交叉熵 L = − ∑ l ∈ Y l ∑ f = 1 F Y l f ln ⁡ Z l f L=-\sum_{l \in \mathcal{Y}_{l}}\sum_{f=1}^FY_{lf}\ln{Z_{lf}} L=lYlf=1FYlflnZlf吧。
文章然后:介绍图半监督学习领域以及图上运行神经网络领域两个领域相关工作。
文章然后:进行实验展示结果。
文章然后:进行讨论。1.作者模型可以克服Skip-gram方法难以优化多步流程限制同时时间以及效果表现更好。2.未来工作1)解决内存:作者证明对于无法使用GPU大型图,用CPU是可行的。用小批量随机梯度可以缓解这个问题。但是生成小批量时应该考虑GCN的层数,对于非常大且密集连接的图可能需要进一步地近似。2)不支持有向图,但是有解决方法的(具体是什么我没看懂)3)考虑一个权衡参数 λ \lambda λ可能会有益。具体来说就是修改生成自循环图时用的 λ \lambda λ。即 A ~ = A + λ I \tilde{A}=A+\lambda I A~=A+λI
文章然后:得到结论。
文章最后:引用以及其他工作。1)WL-1算法2)深层的GCN。太深不好。

代码实操

导入依赖

import matplotlib.pyplot as plt
import networkx as nx

定义函数

def visualize_graph(G,color):
    plt.figure(figsize=(7,7))
    plt.xticks([])
    plt.yticks([])
    nx.draw_networkx(G,pos=nx.spring_layout(G,seed=42),with_labels=False,node_color=color,cmap="Set2")
    plt.show()
#可视化图网络
def visualize_embedding(h,color,epoch=None,loss=None):
    plt.figure(figsize=(7,7))
    plt.xticks([])
    plt.yticks([])
    h=h.detach().cpu().numpy()
    plt.scatter(h[:,0],h[:,1],s=140,c=color,cmap="Set2")
    if epoch is not None and loss is not None:
        plt.xlabel(f'Epoch: {
      epoch}, Loss: {
      loss.item():.4f}',fontsize=16)
    plt.show()
#可视化图嵌入

导入数据

from torch_geometric.datasets import KarateClub
dataset=KarateClub()

KarateClub数据集简单说明:34个人的社交网络,如果在俱乐部之外两人认识连一条边。然后由于俱乐部的内部冲突,人们选择站队所以分成两派。
打印信息

print(len(dataset),dataset.num_features,dataset.num_classes)
#输出:1 34 4

简单说明:num_features:33加上1。33指,这个节点与其他的33个节点是否有边,有边为1,无边为0。1是指度。num_classes:按理应该为2,但是官方做了修改,所以这里为4。

data=dataset[0]
#具体到确定的图上
print(data.num_nodes,data.num_edges,data,data.train_mask.sum().item())
#输出:34 156 Data(x=[34, 34], edge_index=[2, 156], y=[34], train_mask=[34]) 4
print(data.has_isolated_nodes(),data.has_self_loops(),data.is_undirected())
#输出:False False True
edge_index=data.edge_index
print(edge_index.t())
#输出:不表

导入依赖

from torch_geometric.utils import to_networkx

可视网络

G=to_networkx(data,to_undirected=True)
visualize_graph(G,color=data.y)

在这里插入图片描述
搭建模型GCN的框架

from torch_geometric.nn import GCNConv
from torch.nn import Linear
import torch
class GCN(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1=GCNConv(dataset.num_features,4)
        self.conv2=GCNConv(4,4)
        self.conv3=GCNConv(4,2)
        self.classifier=Linear(2,dataset.num_classes)
    def forward(self,x,edge_index):
        h=self.conv1(x,edge_index)
        h=h.tanh()
        h=self.conv2(h,edge_index)
        h=h.tanh()
        h=self.conv3(h,edge_index)
        h=h.tanh()
        out=self.classifier(h)
        return out,h
model=GCN()
print(model)
#输出
#GCN(
#  (conv1): GCNConv(34, 4)
#  (conv2): GCNConv(4, 4)
#  (conv3): GCNConv(4, 2)
#  (classifier): Linear(in_features=2, out_features=4, bias=True)
#)

简单说明: X v ( l + 1 ) = W ( l + 1 ) ∑ w ∈ N ( v ) ∪ { v } 1 c w , v ⋅ X w ( l ) X_{v}^{(l+1)}=W^{(l+1)}\sum_{w \in N(v)\cup{\{v\}}}\frac{1}{c_{w,v}}\cdot X_{w}^{(l)} Xv(l+1)=W(l+1)wN(v){ v}cw,v1Xw(l)
可视嵌入(未经训练)

model=GCN()
_,h=model(data.x,data.edge_index)
visualize_embedding(h,color=data.y)

在这里插入图片描述
进行训练得出结果

model=GCN()
criterion=torch.nn.CrossEntropyLoss()
optimizer=torch.optim.Adam(model.parameters(),lr=0.01)
def train(data):
    optimizer.zero_grad()
    out,h=model(data.x,data.edge_index)
    loss=criterion(out[data.train_mask],data.y[data.train_mask])
    loss.backward()
    optimizer.step()
    return loss,h
for epoch in range(401):
    loss,h=train(data)
    if epoch==400:
        visualize_embedding(h,color=data.y,epoch=epoch,loss=loss)

在这里插入图片描述

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/zhishichengjin/article/details/130450385

智能推荐

稀疏编码的数学基础与理论分析-程序员宅基地

文章浏览阅读290次,点赞8次,收藏10次。1.背景介绍稀疏编码是一种用于处理稀疏数据的编码技术,其主要应用于信息传输、存储和处理等领域。稀疏数据是指数据中大部分元素为零或近似于零的数据,例如文本、图像、音频、视频等。稀疏编码的核心思想是将稀疏数据表示为非零元素和它们对应的位置信息,从而减少存储空间和计算复杂度。稀疏编码的研究起源于1990年代,随着大数据时代的到来,稀疏编码技术的应用范围和影响力不断扩大。目前,稀疏编码已经成为计算...

EasyGBS国标流媒体服务器GB28181国标方案安装使用文档-程序员宅基地

文章浏览阅读217次。EasyGBS - GB28181 国标方案安装使用文档下载安装包下载,正式使用需商业授权, 功能一致在线演示在线API架构图EasySIPCMSSIP 中心信令服务, 单节点, 自带一个 Redis Server, 随 EasySIPCMS 自启动, 不需要手动运行EasySIPSMSSIP 流媒体服务, 根..._easygbs-windows-2.6.0-23042316使用文档

【Web】记录巅峰极客2023 BabyURL题目复现——Jackson原生链_原生jackson 反序列化链子-程序员宅基地

文章浏览阅读1.2k次,点赞27次,收藏7次。2023巅峰极客 BabyURL之前AliyunCTF Bypassit I这题考查了这样一条链子:其实就是Jackson的原生反序列化利用今天复现的这题也是大同小异,一起来整一下。_原生jackson 反序列化链子

一文搞懂SpringCloud,详解干货,做好笔记_spring cloud-程序员宅基地

文章浏览阅读734次,点赞9次,收藏7次。微服务架构简单的说就是将单体应用进一步拆分,拆分成更小的服务,每个服务都是一个可以独立运行的项目。这么多小服务,如何管理他们?(服务治理 注册中心[服务注册 发现 剔除])这么多小服务,他们之间如何通讯?这么多小服务,客户端怎么访问他们?(网关)这么多小服务,一旦出现问题了,应该如何自处理?(容错)这么多小服务,一旦出现问题了,应该如何排错?(链路追踪)对于上面的问题,是任何一个微服务设计者都不能绕过去的,因此大部分的微服务产品都针对每一个问题提供了相应的组件来解决它们。_spring cloud

Js实现图片点击切换与轮播-程序员宅基地

文章浏览阅读5.9k次,点赞6次,收藏20次。Js实现图片点击切换与轮播图片点击切换<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title></title> <script type="text/ja..._点击图片进行轮播图切换

tensorflow-gpu版本安装教程(过程详细)_tensorflow gpu版本安装-程序员宅基地

文章浏览阅读10w+次,点赞245次,收藏1.5k次。在开始安装前,如果你的电脑装过tensorflow,请先把他们卸载干净,包括依赖的包(tensorflow-estimator、tensorboard、tensorflow、keras-applications、keras-preprocessing),不然后续安装了tensorflow-gpu可能会出现找不到cuda的问题。cuda、cudnn。..._tensorflow gpu版本安装

随便推点

物联网时代 权限滥用漏洞的攻击及防御-程序员宅基地

文章浏览阅读243次。0x00 简介权限滥用漏洞一般归类于逻辑问题,是指服务端功能开放过多或权限限制不严格,导致攻击者可以通过直接或间接调用的方式达到攻击效果。随着物联网时代的到来,这种漏洞已经屡见不鲜,各种漏洞组合利用也是千奇百怪、五花八门,这里总结漏洞是为了更好地应对和预防,如有不妥之处还请业内人士多多指教。0x01 背景2014年4月,在比特币飞涨的时代某网站曾经..._使用物联网漏洞的使用者

Visual Odometry and Depth Calculation--Epipolar Geometry--Direct Method--PnP_normalized plane coordinates-程序员宅基地

文章浏览阅读786次。A. Epipolar geometry and triangulationThe epipolar geometry mainly adopts the feature point method, such as SIFT, SURF and ORB, etc. to obtain the feature points corresponding to two frames of images. As shown in Figure 1, let the first image be ​ and th_normalized plane coordinates

开放信息抽取(OIE)系统(三)-- 第二代开放信息抽取系统(人工规则, rule-based, 先抽取关系)_语义角色增强的关系抽取-程序员宅基地

文章浏览阅读708次,点赞2次,收藏3次。开放信息抽取(OIE)系统(三)-- 第二代开放信息抽取系统(人工规则, rule-based, 先关系再实体)一.第二代开放信息抽取系统背景​ 第一代开放信息抽取系统(Open Information Extraction, OIE, learning-based, 自学习, 先抽取实体)通常抽取大量冗余信息,为了消除这些冗余信息,诞生了第二代开放信息抽取系统。二.第二代开放信息抽取系统历史第二代开放信息抽取系统着眼于解决第一代系统的三大问题: 大量非信息性提取(即省略关键信息的提取)、_语义角色增强的关系抽取

10个顶尖响应式HTML5网页_html欢迎页面-程序员宅基地

文章浏览阅读1.1w次,点赞6次,收藏51次。快速完成网页设计,10个顶尖响应式HTML5网页模板助你一臂之力为了寻找一个优质的网页模板,网页设计师和开发者往往可能会花上大半天的时间。不过幸运的是,现在的网页设计师和开发人员已经开始共享HTML5,Bootstrap和CSS3中的免费网页模板资源。鉴于网站模板的灵活性和强大的功能,现在广大设计师和开发者对html5网站的实际需求日益增长。为了造福大众,Mockplus的小伙伴整理了2018年最..._html欢迎页面

计算机二级 考试科目,2018全国计算机等级考试调整,一、二级都增加了考试科目...-程序员宅基地

文章浏览阅读282次。原标题:2018全国计算机等级考试调整,一、二级都增加了考试科目全国计算机等级考试将于9月15-17日举行。在备考的最后冲刺阶段,小编为大家整理了今年新公布的全国计算机等级考试调整方案,希望对备考的小伙伴有所帮助,快随小编往下看吧!从2018年3月开始,全国计算机等级考试实施2018版考试大纲,并按新体系开考各个考试级别。具体调整内容如下:一、考试级别及科目1.一级新增“网络安全素质教育”科目(代..._计算机二级增报科目什么意思

conan简单使用_apt install conan-程序员宅基地

文章浏览阅读240次。conan简单使用。_apt install conan