15-C++基本算法-贪心法_c++贪心算法-程序员宅基地

技术标签: 算法  c++  C++基础笔记  

在这里插入图片描述

理论基础

贪心法(Greedy Algorithm)是一种常见的算法思想,它在每一步选择中都采取当前状态下最优的选择,以期望获得全局最优解。贪心法通常适用于问题具有最优子结构和贪心选择性质的情况。

适用场景

贪心法适用于满足以下两个条件的问题:

  1. 最优子结构:问题的最优解可以通过子问题的最优解来构建。
  2. 贪心选择性质:在每一步选择中,都采取当前状态下的最优选择。

使用步骤

贪心法的使用步骤如下:

  1. 建立数学模型:将问题转化为数学模型,明确问题的目标和约束条件。
  2. 设计贪心策略:确定每一步选择的贪心策略,即在当前状态下的最优选择。
  3. 证明贪心选择的正确性:通过数学证明或逻辑推理,证明贪心选择的正确性。
  4. 实现算法:根据贪心策略编写代码实现算法。
  5. 分析算法性能:评估算法的时间复杂度和空间复杂度,并进行性能分析。

算法缺陷

贪心法的主要缺点是局部最优不一定是全局最优。由于贪心法每一步只考虑当前状态下的最优选择,并没有考虑到全局的情况,因此在某些情况下可能得不到最优解。在应用贪心法解决问题时,需要仔细分析问题的性质,判断贪心法是否适用。

经典例子

贪心法在实际问题中有很多应用,下面介绍几个经典的例子:

  • 活动选择问题:给定一组活动,每个活动都有一个开始时间和结束时间,要求选择出最多的互不冲突的活动。
  • 钱币找零问题:给定一定面值的钞票和一个需要找零的金额,要求找出最少的钞票数量。
  • 背包问题:给定一组物品,每个物品都有一个重量和价值,背包有一定的容量限制,要求选择一些物品放入背包中,使得总价值最大。
  • 小船过河问题:有一条河,河中有一些石头,每块石头的位置和大小都不同,要求找到一种过河方案,使得每次跳石头的距离尽可能小。
  • 区间覆盖问题:给定一组区间,要求选择最少的区间,使得它们的并集覆盖了整个区间。

常见例子

活动选择问题

活动选择问题是一个经典的贪心法应用。给定一组活动,每个活动都有一个开始时间和结束时间,要求选择出最多的互不冲突的活动。

思路解析:

  1. 首先,将活动按照结束时间进行排序。
  2. 初始化一个变量count,表示选择的活动数量。
  3. 选择第一个活动,并将其结束时间作为当前的最远时间。
  4. 遍历剩余的活动,如果当前活动的开始时间大于等于当前的最远时间,则选择该活动,并更新当前的最远时间。
  5. 重复上述步骤,直到遍历完所有活动。
  6. 最终,count即为选择的活动数量。

表格解析:

活动编号 开始时间 结束时间
1 1 4
2 3 5
3 0 6
4 5 7
5 3 9
6 5 9
7 6 10
8 8 11
9 8 12
10 2 14
11 12 16

流程图解析:

初始化
选择第一个面值的钞票
待找零金额是否为0
结束
当前面值是否小于等于待找零金额
加入找零结果,并更新待找零金额
选择下一个面值的钞票
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

struct Activity {
    
    int start;
    int end;
};

bool compare(Activity a, Activity b) {
    
    return a.end < b.end;
}

int maxActivities(vector<Activity>& activities) {
    
    sort(activities.begin(), activities.end(), compare);
    int count = 1;
    int end = activities[0].end;
    for (int i = 1; i < activities.size(); i++) {
    
        if (activities[i].start >= end) {
    
            count++;
            end = activities[i].end;
        }
    }
    return count;
}

int main() {
    
    vector<Activity> activities = {
    {
    1, 4}, {
    3, 5}, {
    0, 6}, {
    5, 7}, {
    3, 9}, {
    5, 9}, {
    6, 10}, {
    8, 11}, {
    8, 12}, {
    2, 14}, {
    12, 16}};
    int maxCount = maxActivities(activities);
    cout << "最多的互不冲突的活动数量为:" << maxCount << endl;
    return 0;
}

通过以上代码,我们可以得到最多的互不冲突的活动数量。这个例子展示了贪心法在活动选择问题中的应用,通过排序和贪心选择策略,我们选择了最多的互不冲突的活动。

钱币找零问题

钱币找零问题是另一个常见的贪心法应用。给定一定面值的钞票和一个需要找零的金额,要求找出最少的钞票数量。

思路解析:

  1. 首先,将钞票按面值从大到小进行排序。
  2. 初始化一个变量count,表示所需钞票的数量。
  3. 遍历排序后的钞票列表,如果当前面值小于等于待找零金额,则将该面值的钞票加入找零结果,并更新待找零金额为剩余金额。
  4. 重复上述步骤,直到待找零金额为0或遍历完所有钞票。
  5. 最终,count即为所需钞票的数量。

表格解析:

面值 数量
50 2
20 0
10 1
5 0
1 2

流程图解析:

graph LR
A[初始化] --> B[选择第一个面值的钞票]
B --> C[待找零金额是否为0]
C --> |是| F[结束]
C --> |否| D[当前面值是否小于等于待找零金额]
D --> |是| E[加入找零结果,并更新待找零金额]
D --> |否| G[选择下一个面值的钞票]
E --> G
G --> C
#include <iostream>
#include <vector>
using namespace std;

int minCoins(vector<int>& coins, int amount) {
    
    int count = 0;
    for (int i = 0; i < coins.size(); i++) {
    
        while (amount >= coins[i]) {
    
            amount -= coins[i];
            count++;
        }
    }
    return count;
}

int main() {
    
    vector<int> coins = {
    1, 5, 10, 25};
    int amount = 67;
    int minCount = minCoins(coins, amount);
    cout << "最少的钞票数量为:" << minCount << endl;
    return 0;
}

通过以上代码,我们可以得到最少的钞票数量。这个例子展示了贪心法在钱币找零问题中的应用,通过贪心选择策略,我们选择了面值最大的钞票来找零,从而达到最少的钞票数量。

背包问题

背包问题是一个经典的动态规划问题,也可以使用贪心法进行求解。给定一组物品,每个物品都有一个重量和价值,背包有一定的容量限制,要求选择一些物品放入背包中,使得总价值最大。

思路解析:

  1. 首先,计算每个物品的单位价值,即价值与重量的比值。
  2. 将物品按照单位价值从大到小进行排序。
  3. 初始化一个变量maxValue,表示背包中物品的总价值。
  4. 初始化一个变量capacity,表示背包的剩余容量。
  5. 遍历排序后的物品列表,如果当前物品的重量小于等于背包的剩余容量,则将该物品放入背包,并更新maxValue为当前价值,capacity为剩余容量减去当前物品的重量。
  6. 如果当前物品的重量大于背包的剩余容量,则计算当前物品的单位价值乘以背包的剩余容量,并加到maxValue上,然后结束遍历。
  7. 重复上述步骤,直到遍历完所有物品或背包的容量用尽。
  8. 最终,maxValue即为背包中物品的总价值。

表格解析:

物品编号 重量 价值 单位价值
1 10 60 6
2 20 100 5
3 30 120 4

流程图解析:

graph LR
A[初始化] --> B[选择第一个物品]
B --> C{背包剩余容量是否为0}
C --> |是| F[结束]
C --> |否| D{当前物品重量是否小于等于背包剩余容量}
D --> |是| E[将物品放入背包,并更新maxValue和capacity]
D --> |否| G[计算当前物品的单位价值乘以背包剩余容量,并加到maxValue上,然后结束遍历]
E --> G
G --> C
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

struct Item {
    
    int weight;
    int value;
};

bool compare(Item a, Item b) {
    
    double ratioA = (double)a.value / a.weight;
    double ratioB = (double)b.value / b.weight;
    return ratioA > ratioB;
}

double maxValue(vector<Item>& items, int capacity) {
    
    sort(items.begin(), items.end(), compare);
    double maxValue = 0.0;
    for (int i = 0; i < items.size(); i++) {
    
        if (capacity >= items[i].weight) {
    
            maxValue += items[i].value;
            capacity -= items[i].weight;
        } else {
    
            maxValue += capacity * ((double)items[i].value / items[i].weight);
            break;
        }
    }
    return maxValue;
}

int main() {
    
    vector<Item> items = {
    {
    10, 60}, {
    20, 100}, {
    30, 120}};
    int capacity = 50;
    double maxVal = maxValue(items, capacity);
    cout << "背包中物品的最大总价值为:" << maxVal << endl;
    return 0;
}

通过以上代码,我们可以得到背包中物品的最大总价值。这个例子展示了贪心法在背包问题中的应用,通过排序和贪心选择策略,我们选择了单位价值最高的物品放入背包,从而达到最大的总价值。

小船过河问题

小船过河问题是一个经典的贪心法应用。假设有一条河,河中有一些石头,每块石头的位置和大小都不同,要求找到一种过河方案,使得每次跳石头的距离尽可能小。

思路解析:

  1. 首先,将石头的位置进行排序。
  2. 初始化一个变量maxDistance,表示每次跳石头的最大距离。
  3. 遍历排序后的石头列表,计算相邻石头之间的距离,并更新maxDistance为最大距离。
  4. 最终,maxDistance即为每次跳石头的

最大距离。

表格解析:

石头编号 位置
1 0
2 2
3 4
4 7
5 8
6 9

流程图解析:

初始化
选择第一个石头
是否遍历完所有石头
结束
计算当前石头与上一个石头之间的距离
更新最大距离
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int maxDistance(vector<int>& stones) {
    
    sort(stones.begin(), stones.end());
    int maxDistance = 0;
    for (int i = 1; i < stones.size(); i++) {
    
        maxDistance = max(maxDistance, stones[i] - stones[i - 1]);
    }
    return maxDistance;
}

int main() {
    
    vector<int> stones = {
    2, 5, 7, 10, 12};
    int maxDist = maxDistance(stones);
    cout << "每次跳石头的最大距离为:" << maxDist << endl;
    return 0;
}

通过以上代码,我们可以得到每次跳石头的最大距离。这个例子展示了贪心法在小船过河问题中的应用,通过排序和贪心选择策略,我们选择了相邻石头之间的最大距离作为每次跳石头的最大距离。

区间覆盖问题

区间覆盖问题是一个经典的贪心法应用。给定一组区间,要求选择最少的区间,使得它们的并集覆盖了整个区间。

思路解析:

  1. 首先,将区间按照结束时间进行排序。
  2. 初始化一个变量count,表示最少的区间数量。
  3. 初始化一个变量end,表示当前的最远结束时间。
  4. 遍历排序后的区间列表,如果当前区间的开始时间大于end,则选择该区间,并更新end为当前区间的结束时间。
  5. 重复上述步骤,直到遍历完所有区间。
  6. 最终,count即为最少的区间数量。

表格解析:

区间编号 开始时间 结束时间
1 1 4
2 3 5
3 0 6
4 5 7
5 3 9
6 5 9
7 6 10
8 8 11
9 8 12
10 2 14
11 12 16

流程图解析:

初始化
选择第一个区间
遍历剩余区间
选择该区间
是否遍历完所有区间
结束
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

struct Interval {
    
    int start;
    int end;
};

bool compare(Interval a, Interval b) {
    
    return a.end < b.end;
}

int minIntervals(vector<Interval>& intervals) {
    
    sort(intervals.begin(), intervals.end(), compare);
    int count = 1;
    int end = intervals[0].end;
    for (int i = 1; i < intervals.size(); i++) {
    
        if (intervals[i].start > end) {
    
            count++;
            end = intervals[i].end;
        }
    }
    return count;
}

int main() {
    
    vector<Interval> intervals = {
    {
    1, 4}, {
    3, 5}, {
    0, 6}, {
    5, 7}, {
    3, 9}, {
    5, 9}, {
    6, 10}, {
    8, 11}, {
    8, 12}, {
    2, 14}, {
    12, 16}};
    int minCount = minIntervals(intervals);
    cout << "最少的区间数量为:" << minCount << endl;
    return 0;
}

通过以上代码,我们可以得到最少的区间数量。这个例子展示了贪心法在区间覆盖问题中的应用,通过排序和贪心选择策略,我们选择了最早结束的区间,并保证每次选择的区间是不重叠的。

总结

贪心法是一种常用的算法思想,适用于具有最优子结构和贪心选择性质的问题。通过选择当前状态下的最优选择,期望达到全局最优解。然而,贪心法也有局限性,局部最优不一定是全局最优。因此,在应用贪心法解决问题时,需要仔细分析问题的性质,并考虑贪心选择的正确性。

贪心法在算法设计中有很多应用,例如活动选择问题、钱币找零问题、背包问题、小船过河问题和区间覆盖问题等。这些例子展示了贪心法的思想和具体应用,希望能够帮助你理解和应用贪心法解决问题。

通过不断学习和练习,你将逐渐熟悉贪心法的思想和应用,并能够灵活运用它解决各种实际问题。加油!

️希望本篇文章对你有所帮助。

️如果你有任何问题或疑惑,请随时向提问。

️感谢阅读!

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/mingfeng4923/article/details/131764209

智能推荐

海康威视网络摄像头开发流程(五)------- 直播页面测试_ezuikit 测试的url-程序员宅基地

文章浏览阅读3.8k次。1、将下载好的萤石js插件,添加到SoringBoot项目中。位置可参考下图所示。(容易出错的地方,在将js插件在html页面引入时,发生路径错误的问题)所以如果对页面中引入js的路径不清楚,可参考下图所示存放路径。2、将ezuikit.js引入到demo-live.html中。(可直接将如下代码复制到你创建的html页面中)<!DOCTYPE html><html lan..._ezuikit 测试的url

如何确定组态王与多动能RTU的通信方式_组态王ua-程序员宅基地

文章浏览阅读322次。第二步,在弹出的对话框选择,设备驱动—>PLC—>莫迪康—>ModbusRTU—>COM,根据配置软件选择的协议选期期,这里以此为例,然后点击“下一步”。第四步,把使用虚拟串口打勾(GPRS设备),根据需要选择要生成虚拟口,这里以选择KVCOM1为例,然后点击“下一步”设备ID即Modbus地址(1-255) 使用DTU时,为下485接口上的设备地址。第六步,Modbus的从机地址,与配置软件相同,这里以1为例,点击“下一步“第五步,Modbus的从机地址,与配置软件相同,这里以1为例,点击“下一步“_组态王ua

npm超详细安装(包括配置环境变量)!!!npm安装教程(node.js安装教程)_npm安装配置-程序员宅基地

文章浏览阅读9.4k次,点赞22次,收藏19次。安装npm相当于安装node.js,Node.js已自带npm,安装Node.js时会一起安装,npm的作用就是对Node.js依赖的包进行管理,也可以理解为用来安装/卸载Node.js需要装的东西_npm安装配置

火车头采集器AI伪原创【php源码】-程序员宅基地

文章浏览阅读748次,点赞21次,收藏26次。大家好,小编来为大家解答以下问题,python基础训练100题,python入门100例题,现在让我们一起来看看吧!宝子们还在新手村练级的时候,不单要吸入基础知识,夯实自己的理论基础,还要去实际操作练练手啊!由于文章篇幅限制,不可能将100道题全部呈现在此除了这些,下面还有我整理好的基础入门学习资料,视频和讲解文案都很齐全,用来入门绝对靠谱,需要的自提。保证100%免费这不,贴心的我爆肝给大家整理了这份今天给大家分享100道Python练习题。大家一定要给我三连啊~

Linux Ubuntu 安装 Sublime Text (无法使用 wget 命令,使用安装包下载)_ubuntu 安装sumlime text打不开-程序员宅基地

文章浏览阅读1k次。 为了在 Linux ( Ubuntu) 上安装sublime,一般大家都会选择常见的教程或是 sublime 官网教程,然而在国内这种方法可能失效。为此,需要用安装包安装。以下就是使用官网安装包安装的教程。打开 sublime 官网后,点击右上角 download, 或是直接访问点击打开链接,即可看到各个平台上的安装包。选择 Linux 64 位版并下载。下载后,打开终端,进入安装..._ubuntu 安装sumlime text打不开

CrossOver for Mac 2024无需安装 Windows 即可以在 Mac 上运行游戏 Mac运行exe程序和游戏 CrossOver虚拟机 crossover运行免安装游戏包-程序员宅基地

文章浏览阅读563次,点赞13次,收藏6次。CrossOver24是一款类虚拟机软件,专为macOS和Linux用户设计。它的核心技术是Wine,这是一种在Linux和macOS等非Windows操作系统上运行Windows应用程序的开源软件。通过CrossOver24,用户可以在不购买Windows授权或使用传统虚拟机的情况下,直接在Mac或Linux系统上运行Windows软件和游戏。该软件还提供了丰富的功能,如自动配置、无缝集成和实时传输等,以实现高效的跨平台操作体验。

随便推点

一个用聊天的方式让ChatGPT写的线程安全的环形List_为什么gpt一写list就卡-程序员宅基地

文章浏览阅读1.7k次。一个用聊天的方式让ChatGPT帮我写的线程安全的环形List_为什么gpt一写list就卡

Tomcat自带的设置编码Filter-程序员宅基地

文章浏览阅读336次。我们在前面的文章里曾写过Web应用中乱码产生的原因和处理方式,旧文回顾:深度揭秘乱码问题背后的原因及解决方式其中我们提到可以通过Filter的方式来设置请求和响应的encoding,来解..._filterconfig selectencoding

javascript中encodeURI和decodeURI方法使用介绍_js encodeur decodeurl-程序员宅基地

文章浏览阅读651次。转自:http://www.jb51.net/article/36480.htmencodeURI和decodeURI是成对来使用的,因为浏览器的地址栏有中文字符的话,可以会出现不可预期的错误,所以可以encodeURI把非英文字符转化为英文编码,decodeURI可以用来把字符还原回来_js encodeur decodeurl

Android开发——打包apk遇到The destination folder does not exist or is not writeable-程序员宅基地

文章浏览阅读1.9w次,点赞6次,收藏3次。前言在日常的Android开发当中,我们肯定要打包apk。但是今天我打包的时候遇到一个很奇怪的问题Android The destination folder does not exist or is not writeable,大意是目标文件夹不存在或不可写。出现问题的原因以及解决办法上面有说报错的中文大意是:目标文件夹不存在或不可写。其实问题就在我们的打包界面当中图中标红的Desti..._the destination folder does not exist or is not writeable

Eclipse配置高大上环境-程序员宅基地

文章浏览阅读94次。一、配置代码编辑区的样式 <1>打开Eclipse,Help —> Install NewSoftware,界面如下: <2>点击add...,按下图所示操作: name:随意填写,Location:http://eclipse-color-th..._ecplise高大上设置

Linux安装MySQL-5.6.24-1.linux_glibc2.5.x86_64.rpm-bundle.tar_linux mysql 安装 mysql-5.6.24-1.linux_glibc2.5.x86_6-程序员宅基地

文章浏览阅读2.8k次。一,下载mysql:http://dev.mysql.com/downloads/mysql/; 打开页面之后,在Select Platform:下选择linux Generic,如果没有出现Linux的选项,请换一个浏览器试试。我用的谷歌版本不可以,换一个别的浏览器就行了,如果还是不行,需要换一个翻墙的浏览器。 二,下载完后解压缩并放到安装文件夹下: 1、MySQL-client-5.6.2_linux mysql 安装 mysql-5.6.24-1.linux_glibc2.5.x86_64.rpm-bundle